手机浏览器扫描二维码访问
原题如下……
“素数也叫质数,是只能被自己和1整除的数,如2、3、5、7、11等等。”
“2300年前,古希腊数学家欧几里得在《几何原本》一书中证明了素数有无穷多个,并提出少量素数可写成“2^P-1”(其中指数P也是一个素数)的形式,这种素数被称为“梅森素数”(Mersenneprime)。”
“迄今为止。”
“人类仅发现48个梅森素数,梅森素数珍奇而迷人,因此被誉为“数海明珠”。”
“同时梅森素数的分布时疏时密、极不规则,另外人们尚未知梅森素数是否有无穷多个,因此探究梅森素数的重要性质——分布规律似乎比寻找新的梅森素数更为困难。”
“而目前的已知的规律猜测是,是由1976年,东云数学家老周所提出……”
“当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是素数。”
“老周还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。”
“(注:p为素数;n为自然数;Mp为梅森数)。”
“sp:试证明或者反证该猜测?”
“……”
以上。
就是该笔记本中所记内容。
后边还有很长,涉及相关的一些证明方法,已经各种论证,暂且省略。
还是那句话……
若是一般人看到这证明题,估计立马头昏眼花脚抽筋,要晕过去了。
只因……
这特么就是周氏猜想啊!
也叫梅森素数分布的猜测。
而梅森素数猜想,与孪生素数猜想,哥德巴赫猜想,ABC猜想,黎曼猜想又并称为素数方面的五大猜想。
虽然周氏猜测只是对梅森素数规律的猜测,且表达式貌似非常简单。
但若要证明或反证该猜测。
那难度不可谓不大。
反正已有无数数学方面的大家尝试证明,即便绞尽脑汁,可仍一无所获。
现在也不知是哪个黑手把该笔记本又摆在江南面前,那他能证明么?
若是过去,还真不好说。
但现在么?
这个可能性还是有的。
只见他翻开笔记本后,那是不惊反喜,并连忙找个桌子坐下,跃跃欲试。
话说……
他已经很久没看到过这么有难度的证明题,堪比之前的孪生素数猜想。
虽然有挑战。
但他最喜欢的就是挑战。
说不得。
他今天还非证明其不可。
“解:首先化解周氏猜测为:当2^(2^(n?1))<p<2^(2^n)时,Mp有2^n-1个是素数,πMp^(2^n)-πMp^(2^2(n?1))=2^n-1……(a)。”
王爷,爬墙呢 卑鄙的圣人:曹操(第1部) 当我倒在江医生家门口 军团:蛮族之战 卑鄙的圣人:曹操(第5部) 契诃夫小说选集·孩子集 此生不相负(全集) 那种爱,情非得已 装在游戏机里的爸爸 顾先生有个恋爱系统 我的如夕如意 卑鄙的圣人:曹操(第2部) 卑鄙的圣人:曹操(第4部) 僵尸世界里的圣骑士 嫁给那樵夫之后 徽章之下 卖猪肉女郎的爱情故事 他比微风暖 摊牌了,神豪从被学姐冤枉开始 未结案I
...
人的一生要靠自我奋斗,当然也要考虑历史的进程!克格勃对外情报总局,332362665克格勃国内防谍总局,533461647...
一场车祸,让一个普通医生拥有了透视的能力,第二天,自己竟然成了自己的仇家的女婿?...
姜羽熙费尽心思嫁给了自己心仪的男人,却被狠心抛弃,父母也因为她的固执而死亡。三年后重新回到伤心地,她不折手段报复,却发现自己再厉害,也不过是沈千裘的玩物。她从一个深渊里跳出来,跌入了另一个深渊,但后来发现这似乎不是什么深渊...
三族大战,龙族真的一蹶不振?凤祖之子孔宣名动天下,作为三族之首的龙族真的没有绝顶强者?龙族坐拥四海,实力却是弱小无比,偌大的海域竟没有强者占领?洪荒亿万年,所谓的天使,众神到底从何而来?一只菱龙,如何在洪荒演绎自己的传奇?空间法则,时间法则,先天至宝,都有。兄弟,徒弟,师尊,也都有。逆天,顺天,只看心情!...
...